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The influence of diffusive nonlinearity on mobility of photovoltaic lattice solitons is demonstrated. The
dynamical evolution of collision between photovoltaic lattice solitons and nonlinear lattices are simulated
numerically. The results show the lattice solitons with a transverse velocity have complicated behaviors
and will not propagate with an oblique trajectory. When considering the diffusive nonlinearity, we find
that diffusive nonlinearity can introduce a nonlinear chirped phase to lattice soliton and the lattice soliton
with a special incident angle can become a “tilted soliton”.
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Optical spatial solitons (OSSs) have been the object of in-
tensive theoretical and experimental research during the
last four decades[1,2], inasmuch as light-induced waveg-
uides seem to entail large potentials for applications in
novel generations of re-addressable and reconfigurable
networks. When a very narrow optical beam induces
(through self-focusing) a waveguide structure and guides
itself in its own induced waveguide, the beam is called a
spatial soliton. Thus far, lots of nonlinear effects have
been found and used to form the OSS, for example, cu-
bic nonlinearity(Kerr) effect[2], cubic-quintic competing
nonlinearity[3], photorefractive effect[4−6], photoisomer-
ization nonlinearity effect[7,8], etc. In all these kinds of
OSSs, those forming in photorefractive and polymer ma-
terial are particularly interesting, because they can be
formed in the optical power level of µW (with intensity
of mW/cm2 ).

In recent years, discrete and lattice solitons which are
OSSs in periodic optical media (such as waveguide ar-
rays and photonic lattices) have been the focus of con-
siderable researches[9−11] due to a rich variety of func-
tional operations of these solitons, e.g., blocking, routing,
logic functions, and time gating. Many novel discrete
solitons, such as diffraction managed solitons, discrete
vector solitons, Floquet-Bloch solitons in homogeneous
waveguide arrays, were predicted theoretically and sub-
sequently verified in experiment[12−15]. Photonic Bloch
oscillations and hybrid discrete solitons were found in in-
homogeneous waveguide arrays[16,17]. Furthermore, some
theoretical and experimental results have indicated the
nonlinear periodic optical media can support some non-
stationary solitons which are linearly unstable in homoge-
neous local media, such as high-order solitons, ring vortex
solitons, dipole solitons, quadrupole solitons, necklacelike
solitons[18−22]. At present, optically induced photonic
lattices in photorefractive crystals which are dynamically
adjustable, allowing real-time control of lattice spacing
and potential well depth, provide an important experi-
mental tool to form the photorefractive lattice solitons.
The most popular experimental configuration for these
solitons is based on uniaxial strontium barium niobate
(SBN) photorefractive crystal, in which the lattice beam

(LB) is o-ray while the soliton beam (SB) is e-ray polar-
ized along the c-axis. The SB will feel nonlinearity arising
from the photorefractive screening effect with a biased
DC electric field along c-axis, while the LB remains linear
propagation. These progresses open new applications for
all-optical signal processing and switching. Recently, we
propose a class of photorefractive lattice solitons induced
by periodic background LB while the nonlinearity arises
from the bulk photovoltaic photorefractive effect of SB
and LB[23]. In this case, the transition of self-defocusing
to self-focusing seen by photovoltaic lattice solitons can
be realized by changing the wavelength of LB while it
can be realized by reversing DC electric field for pho-
torefractive screening lattice solitons. All these solitons
are obtained with neglecting the diffusive effect. In fact,
for photorefractive solitons in uniform media, the self-
bending of these solitons is caused by diffusion effects in
PR crystals and becomes an important effect when the
beam size is in the range of the charge carrier diffusion
length. In this letter, we study the mobility of photo-
voltaic lattice solitons in nonlinear lattices, especially,
address the impact of diffusive effect on the mobility of
these solitons.

Here we consider a signal beam propagating along di-
rection z in a bulk photovoltaic photorefractive material.
The direction x is the ferroelectric c axis and the beams
are allowed to diffract only along this direction. Con-
sidering the photovoltaic effect of background illumina-
tion and the diffusion effect[24,25], under the condition of
open-circuit, we can obtain the expression of the space-
charge field Esc based on the band-transport model de-
veloped by Kukhtarev et al.[26], as follows

Esc(x) = −Ep
SsIs + RSbIb

SsIs + SbIb + β

− KBT

q

d ln(SsIs + SbIb + β)

dx
, (1)

where Ss and Sb are the photoionization cross sections
with respect to SB and LB; Ep = κsγNA/qµ, and
R = κb/κs; β is the dark generation rate; γ is the re-
combination rate coefficient; NA is the number density
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of the charged acceptors that compensate for the ion-
ized donors; µ is the carrier mobility; κs and κb are the
Glass constants with respect to SB and LB, respectively;
q is the charge on the carrier; KB is the Boltzman con-
stant and T is the absolute temperature. Is and Ib are
the intensities of SB and LB, respectively. The periodic
background LB is created by the interference pattern of
two counterpropagating laser beams with ordinary po-
larization. The optically induced photonic lattice is es-
sentially harmonic, having an intensity of distribution
Ib(x) = I0 cos2(Kx), where K = 2πno cos θ/λb, λb the
LB wavelength; θ is the angle between two wavevectors
of the LBs and the x axis; no the refractive index of o-
ray, and I0 the maximum intensity of LB. It is clearly
that the first and second terms of right hand of Eq. (1)
correspond to the space-charge field excitated by photo-
voltaic and diffusion effects, respectively.

The refractive index change of SB is directly propor-
tional to the space-charge field via the Pockels effect,
which is

∆n(x) = −1

2
n3

eγeffEsc(x), (2)

where ne is the unperturbed refractive index of SB and
γeff is the effective linear electro-optic coefficient.

The propagation dynamics of SB can be described by
the following generalized nonlinear Schrödinger equation
(NLSE) in the paraxial approximation and the slowly
varying amplitude approximation:

i2k
∂E

∂z
+ ∇2

⊥
E +

2k2

ne
∆n · E = 0, (3)

where ∆n is a real function describing the photo-induced
index perturbation, k = k0ne, and k0 is the wavenum-
ber of the SB in vacuum. The function E describes a
complex envelope of the light field and Is = |E|2. In the
following, we consider (1+1)-D case. So ∇2

⊥
= ∂2

/

∂x2.
Substituting Eqs. (1) and (2) into Eq. (3) and adopting
scale transformation ξ = z

/

kx2
0, s = x/x0 (where x0 is

an arbitrary spatial scale), we obtain

i
∂E

∂ξ
+

1

2

∂2E

∂s2
+ α

Ss |E|2 + RSbIb

Ss |E|2 + SbIb + β
E

+ γd
∂ ln(Ss |E|2 + SbIb + β)

∂s
E = 0, (4)

where α = k2x2
0n

2
eγeffEp

/

2, γd = k2x0n
2
eγeffKBT

/

(2q).
γd stands for the strength of diffusion nonlinearity. Gen-
erally, for the case of ignoring the diffusion term of Eq.
(4), we obtain

i
∂E

∂ξ
+

1

2

∂2E

∂s2
+ α

Ss |E|2 + RSbIb

Ss |E|2 + SbIb + β
E = 0. (5)

Ignoring the nonlinear term of Eq. (5) and comparing
with standard Schrödinger equation in quantum mechan-
ics, we can obtain the lattice potential V (s) as follows

V (s) = −2α
R cos2(Kx0s)

cos2(Kx0s) + Id/I0
. (6)

Generally, Id(= β/Ss) << I0 is valid, so the potential
strength of lattice are determined by α · R. The photo-
voltaic lattice solitons in the first (semi-infinite) band

gap of linear periodic lattice of Eq. (5) were obtained
in Ref. [23] when the working medium is photorefrac-
tive iron-doped lithium niobate (LiNbO3) crystal and
R = 2.6. Two photovoltaic lattice solitons corresponding
to Γ = −5 and Γ = −6.2 with I0 = 0.1 mW/cm2 are
displayed in Fig. 1. The dynamical evolution of the FS
with Γ = −6.2 is shown in Fig. 1(b).

In uniform media, as is well known, the soliton hav-
ing a transverse velocity will propagate with an oblique
trajectory due to the Galilean transformation invariance
of NLSE[27]. For lattice solitons, due to the absence of
translational invariance along the s direction associated
with the periodic potential, the Galilean transformation
invariance is invalid. So the mobility of lattice solitons
must be affected by nonlinear lattices even though the
diffusive effect is not considered. We simulate Eq. (5)
by Split-Step Fourier scheme with initial condition given
by E = U(s)

√
I0 exp(iθs), where U(s) is the amplitude

of soliton and θ stands for the collision angle (or the soli-
ton transverse velocity). Unless stated otherwise, U(s)
corresponding to Γ = −5 displayed in Fig. 1(a) is chosen
in our simulations.

In Fig. 2, we show the dynamical evolutions of pho-
tovoltaic lattice solitons with different θ. When θ = 1,
the soliton propagate with periodic oscillation in lattice
potential well as shown in Fig. 2(a). This indicates
the collision between soliton and lattice is almost elastic
collision. The soliton almost like a particle restricted
in lattice potential well. If the soliton is viewed as a
particle, we can image an intuitive picture that when we
increase θ which means increase the transverse velocity of
soliton, it will traverse the hump of lattice potential and
lose its transverse momentum simultaneously. When the
transverse momentum of soliton is not large enough, it
will be trapped in lattice potential well. Our simulations
indicate the effective particle model will not be valid
when the θ is large enough. When θ = 2, the soliton un-
dergoes scattering by the hump of nonlinear lattice and
a part of energy of soliton couple into neighboring po-
tential well as shown in Fig. 2(b). It is obvious that the
period oscillation is disappeared and the collision is not
elastic. When we increase θ, the soliton can transverse
more humps of nonlinear lattice as shown in Fig. 2(c).
In this case, the soliton is also robust even though there
are some losses of radiation at each collision between the
soliton and lattice.

Next, we study the effect of potential strength on
interactions between photovoltaic lattice solitons and
nonlinear lattices. For this purpose, we have repeated
the above calculations with a lower potential value. In
this case, we choose the value of R = 2.0 which can be

Fig. 1. (a) Photovoltaic lattice soliton solutions with Γ =
−6.2 and Γ = −5; (b) the dynamical evolution of the lattice
soliton corresponding to Γ = −6.2.
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obtained by choose the wavelength of LB λb = 594 nm.
The results are shown in Figs. 2(d)–(f). Comparing Fig.
2(a) with Fig. 2(d), one can see that oscillation frequency
of soliton decreases with the decrease of lattice poten-
tial. In addition, as the decrease of lattice potential, the
lattice has weaker blocking for tilted soliton as shown in
Figs. 2(e) and (f). We would like to note that when θ
are opposite numbers corresponding to aforementioned
examples, the evolution results of photovoltaic lattice
solitons will be symmetric with Fig. 2 about the s = 0
axis.

As is well known, the nonlocal diffusion nonlinearity
of photorefractive crystal becomes significant for narrow
light beams and results in the self-bending of soliton. In
the following, we study the dynamical behavior of lattice
soliton undergoing diffusion nonlinearity.

We directly simulate Eq. (4) by split-step Fourier
scheme, with the diffusion nonlinear part treated
in two ways: finite-difference scheme and pseudo-
spectral method. The initial condition given by E =
U(s)

√
I0 exp(iθs), where U(s) corresponds to Γ = −5

displayed in Fig. 1(a), and γd = 1 is chosen in our simu-
lations. In Fig. 3, we show the dynamical evolutions of
photovoltaic lattice solitons with different θ. For small
tilted angle cases (θ = ±1), the soliton is still restricted
by lattice potential well, however the periodic oscillation
of soliton disappear. Furthermore, the evolution patterns
with respect to θ = ±1 are not symmetric with regard
to the s = 0 axis as shown in Figs. 3(a) and (d) because
the diffusive nonlinearity is asymmetric. The evident
asymmetric behavior are shown in Figs. 3(b) and (e)
and Figs. 3(c) and (f) where θ = ±2 and ±3.

An interesting case is observed in Fig. 3(f) which is
corresponding to θ = 3. In this case, the lattice soli-
ton is like a “tilted (or traveling) soliton” which moves
across the lattices undistorted[28,29]. The existence of
tilted soliton is a novel phenomenon, because the moving

Fig. 2. Dynamical evolutions of photovoltaic lattice soli-
tons with different θ and different lattice potentials. (a)–(c)
R = 2.6; (d)–(f) R = 2.0.

Fig. 3. Dynamical evolutions of photovoltaic lattice soli-
tons undergoing diffusion nonlinearity with different θ. (a)
θ = −1; (b) θ = −2; (c) θ = −3; (d) θ = 1; (e) θ = 2; (f)
θ = 3.

soliton will lose its kinetic energy due to the presence of
the lattice potential. Although there is a long-standing
debate on the existence of exact tilted soliton in the dis-
crete NLSE, it is generally believed that tilted soliton
should possess a nontrivial nonlinear chirped phase and
the motion of tilted soliton is supported by the phase
gradient. Comparing Fig. 2(f) with Fig. 3(f), we can see
the diffusive nonlinearity has evident contribution on the
mobility of lattice soliton. We believe that the diffusive
nonlinearity introduces a chirped phase to lattice soliton
and the soliton becomes more robust.

In conclusion, we demonstrate theoretically the influ-
ence of diffusive nonlinearity on mobility of photovoltaic
lattice solitons based on Kukhtarev model. Due to the
presence of periodic lattice potential, the Galilean trans-
formation invariance of nonlinear Schrödinger equation
is invalid. The dynamical evolution of collision between
photovoltaic lattice solitons and nonlinear lattices are
simulated numerically. The results show the lattice
solitons having a transverse velocity have complicated
behaviors and will not propagate with an oblique trajec-
tory. When we consider the diffusive nonlinearity, it is
found that diffusive nonlinearity can introduce a chirped
phase to lattice soliton and the lattice soliton with a
special incident angle can becomes a “tilted soliton”.
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